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In [1] the author gave a solution of the problem of how the Hall cur-
rents influence the flow pattern of a conducting gas which is accel-
erated in a channel to high velocities in external electric and mag-
netic fields. The present article considers the influence of Hall cur~
rents on the acceleration of a plasma in its own magnetic field, i.e.,
the magnetic field induced by the currents flowing in the plasma.

1. We consider the flow of a conducting gas in a
channel with constant cross section and rectilinear
axis. We introduce a rectangular system of coordi-
nates, directing the x axis along the axis of the chan-
nel, and placing the origin on the lower wall in the
initial cross section of the channel. We direct the y
axis at right angles to the lower wall, and by y, we
denote the constant height of the channel. We formu-
late the assumptions on which the problem will be
solved.

(1) All the required quantities are independent of
the z coordinate.

(2) The component of the electric field strength
vector E in the direction of the z axis is equal fo
zero . The potential difference ¢ (x) applied to the
upper and lower walls of the channel is such that
Ex < Ey= E(x, V).

(3) There are no external magnetic fields.

(4) The plasma is neutral on the average. The con-
ductivity o = const and the parameter wT = k = const
{w is the cyclotron frequency of the electrons and T is
the time between collisions). The quantity k is such
that k% may be neglected in comparison with unity.

(5) The height y, of the channel is constant,

(6) Distortion of the electric and magnetic fields at
the side walls of the channel and at the ends of the
channel may be neglected.

(7) The gas is accelerated to high velocities (~107
cm/sec), and the pressure gradient may be neglected
in comparison with the electrodynamic force.

Assumptions (1), (3), (6) correspond to the case of
flow in a cylindrical channel with coaxial electrodes
in which the distance y, between electrodes is small
compared with the radii of the electrodes. See [2],
for example, as regards the acceptability of assump-
tion (7).

The equations of continuity and motion and the
generalized Ohmi's law have the following form:

o {pu)/ dx + 3 (pv) / oy = 0, (1.1)
du ou 4 ol
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Here p is the density, u and v are the components
of the velocity on the x and y axes, H is the compo-
nent of the magnetic field strength on the z axis, Here
the well-known equation of electrodynamics rotH =
= (47/c)j is taken into consideration.

The boundary conditions for u, v and p will be

u=1lp, v=0, p=py forz=0;
(1.4)
v=0 fory=y and y=0,

In addition to this we have the conditions for H and
E

Yo

H=0 for z=L, y=0; SEd}/ :(p(x) (1.5)
0

Clearly, the condition for E expresses the fact that the potential
difference between the electrades is a given quantity. As regards the
condition for H, the following must be noted. If there were no Hall
currents, then as a result of the fact that we neglect end effects, H
should vanish at the end of the channel. The presence of currents
flowing along the x axis may lead to the magnetic field strength being
different from zero over the whole cross section at the end of the chan-
nel. However, as is well known, currents flowing along the surface of
an axially-symmetric conductor give rise to a magnetic field outside
the conductor only. Thus at the extemnal electrode, i.e., at y = 0 the
magnetic field strength remains equal to zero. At other points on the
end section it must be determined from the solution of the problem.

Eliminating E from (1.3), we obtain

A [0y —kOH |0z = (hns [ ) oH (1.8)
and for E itself we have from (1.3) the expression
£ = (1]c)yul — (¢ ] %kns) (8H [ 0z + k3H | 8y) 5
substituting in (1.5), we find

s
cd i Iy N

x $‘7 utl —47% ('0.—5 + k 67)J dy =@ {x) . (1.7)
0

Thus we must solve a system of four partial differential equations
(1.1}, (1.2), (1.6) for boundary conditions (1.4), (1.5) and (1.7). The
unknown functions are p. u, v and H, )

It was pointed out in [1] that in our case of acceleration to high
velocities the influence of the Hall current leads to three different flow
zones appearing in the channel. A zone of strong rarefaction (vacuum)
is formed at the lower wall (anode) and there is a compression shock
on the upper wall, while the core of the flow lies between these two
zones. The ratio of the vacuum zone and the zone behind the com-
pression shock to the chamel height will be of the order of k, as was
pointed out in {1].

First of all, we shall consider the core flow, We
expand the required functions in series in powers of k

[and (5] (o8 . Y A
0 = Mok, w2k, v D ik, Hoee SILL(1.8)
in i {

i i Ry
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We solve the system of equations neglecting terms
of order k%, Setting expressions (1.8) in equations
(1.1), (1.2) and (1.6) and equating coefficients of like
powers of k, we obtain a system of equations for de-
termining the zero-th and first approximations., We
have for the quantities p;, ug, v, H; (noting that for
k = 0 there are no Hall currents and the motion in the
channel is one-dimensional)

_ 3 (pota)
Vg = 0, —6m 0, (1.9)
6uo 1 aHo aHo .
Pollo 7 oz —im e —37 =0,
For py, uy, vy, H; we obtain
9 (uop1 + wipe) ;8 (povy) __
oz + ay 0
a ) 1 od aH
(#op1 + ulPo) oz + Doldo au; s ( '+H1 ")(1 10)
9, 8H 8H, 8H, _ 4ns3

Potto 5 = = g Ho 5.1 @1—7,;}’=—c—,—v1110.

Correspondingly, the boundary conditions for the
zero-th approximation give
H 0= O fOI' re=L
=@(z). (1.11)

Up == Ugg, o =0, Do = poo for «=0;
Yo [(1/¢) uoHo — (c [ 4nc) dH, [ dz]

In deriving the last relation from condition (1.7),
we take into consideration the fact that the quantities
of the zero-th approximation are independent of y and
the corresponding expressions may thus be taken out-
side the integral sign.

From (1.4), (1.5), and (1.7) we also obtain the
boundary conditions for the first approximation

u; =0, v, =0, p,=0fore=0, H, =0 forz=L,y=0

Yo

1 aH.
V[ oty + will) — 5 52| dy = 0.
[0 .

(1.12)

In the last condition of (1.12) the integral is taken over the whole
height of the channel and not over the height of the core flow only,
since the difference between these integrals will be of order k. And
since the integral in (1.12) is itself the coefficient of a term of order
k in the expansion of the expression which enters into (1.7), the error
involved in changing the interval of integration will be of the order of
k% i.e., of an order such as we everywhere neglect.

We consider the equations of the zero-th approxi-
mation. We have from the second and third equations
of (1.9) and the boundary conditions

(1.1:3)

Polto = Paolboos

Pooootto + Ho? [ 8t = pogtago? + Hos® / 85 .

Here Hy, denotes the value of H for x = 0, to be
determined.

Expressing u, in terms of H, from (1.13) and set~
ting this in the last relation of (1.11), we obtain an
ordinary differential equation for H,

¢ dHp

Hy
4dns dx [

00 + B W(HOOZ_q‘_HOZ)] - % (1.14)

An arbitrary constant appears when equation (1.14)
is integrated. This may be expressed in terms of Hy,

from the condition that Hy = Hy, for x = 0. Subsequent~
ly, H,, may be determined from the boundary condi-
tion (1.11). Thus, finding the quantities of the zero~th
approximation reduces to the integration of a single
ordinary differential equation of the first order,

The system of equations (1,10) for quantities of the
first approximation is a system of four linear partial
differential equations. With the known quantities of
the zero-th approximation, its solution for boundary
conditions (1.12) may be reduced to the calculation of
quadratures, In fact, eliminating H, from the two last
equations of (1.10), we obtain

avl

cHo
wta

*poatioo

H, dH, =0
4nogouce dz *

v+ (1.15)
This is a linear equation in v;, containing only one
derivative of v, with respect to x. The coefficients of
this equation are also functions of x only. Thus equa~-
tion (1.15) may be integrated with respect to x. Its
general solution will be

S Hy 2ot dg)

4n Pao Yoo
[}

vy =M@ [fl v —

Ao (@) = g Hoddzs

c'«‘p U0
where f;(y) is an arbitrary function of y.

Substituting here the boundary condition (1.12), we
get that f;(y) = 0 and

(1.16)

U= T g

x
LN SH o o) d.
0
Thus the calculation of v, is reduced to quadra-
tures. Next, from the last equation of (1.10), we find

Hy=y[dH,/dx + (4ns [ ) viH,) + f2(2),  (1.17)

where f,(x) is an arbitrary function of x.

Since it follows from (1.16) that v, in the case un-
der consideration depends on x only, from the first
equation of (1.10) and the boundary conditions (1.12)
we find

uypy + upp = 0. (1.18)

Taking (1.18) and (1.13) into consideration, we may
now write the remaining equation of (1.10) in the form

w2,

il 1 oH.
Poo”oo% =~ In ( e
Or integrating

Poottgotty + (17 4n) HoHq = f4 () (1.19)

where f;(y) is an arbitrary function of y.
' For x = 0 we have u; = 0 and, as follows from
(1.17) and (1.12), H, equals

H,(0,y) =y (dH,/ dz)o + f2 (0).
Taking this into account, we find that

foy) = (1] 4n) Hoo ly (@H, [ dz)y + f2 O)] .
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Substituting the value obtained for fy(y) and also
the value of H; from (1.17) into (1.19), we obtain an
explicit expression for the dependence of uy-on y:

1
oy = g X (1.20)

4ATpooloo

X iy [(dH')) Hoo— %—o Ho——‘i—:{‘- Ho””x] + Hoof2 (0) — Hofe (x)} X
Thus H; and u, are expressed in terms of one ar-
bitrary function of x: f;(x). This function must be
determined from the last relation of (1.12), Setting
the value of Hy from (1.17) and u, from (1.20) into
{1.12), we find the required equation for f,(x):

Yo

S[ZA @y +B@) @) +C @0 — d”]dy =0,

e PR [+ dHo dHo el
24(x) = Pootions® [( az ) HoHo— 7 ——=Hgt — Hos?h] +
. 4ns dH, d3H 4 dv dH
+ dxo o+ ( ) Hougv, — [ dxzn -+ *;;“(Ho dzl + v dzo)]
4 i y
Bz) = Tn:‘(uo—mHo,), C(z)=poou:oc’ HyH,,

Here A(x), B(x) and C(x) are known functions of
x. Integrating with respect to y and cutting the inte-
gration off at y,, we obtain an ordinary linear differ-
ential equation for determining the unknown function

Fa(x)g
df,/ dz = B (2) f, (z) + C (2) £, (0) + 3,4 (z).

Its general solution is

fo (@) = [exp (of Bds)|

< (1.21)

{/2 (0} + S [C/2(0) + yod] [exp( S deﬂdx} .

The constant f5({0) may be determined from the
boundary condition (1.12) for H;, which has not yet
been used and which together with (1.17) shows that
fo(L)y =0, Thus Eqgs. (1,16)—(1.18), (1.20), and (1.21)
allow us to calculate all the required quantities of the
first approximation by quadratures in the general
case,

2, We shall complete all the calculations for the
case when there is no Hall current and the function .
¢ (x) is given in optimal form, i.e., such that Joule
losses are minimal for acceleration of the plasma in
the channel to a given velocity. As was shown in [3],
in this case the potential difference distribution along
the channel axis should have the form

= (Hoyo/ ) (1 — [ L) {1200 + (Hos® | Brtpootion) X
X[ — (1 — 2/ L))} + cHonyo/ 4oL,

(2.1)

where Hy, is the value of the magnetic field strength
in the x = 0 cross section, determined from the ex-
pression

Hoo = 4mopoel | yo (4roLutgn + %) (g0 = ¢ (0).(2.2)
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We introduce the dimensionless variables

z/L =2z*  ylL=y* o/ e = £*, (2.3)
«H = “H | H (4ncL [ty u = u*,

(4neoL [ e®)y v = v*, oHy L[ pootioot? = A .

We agree henceforth to omit the stars from the
dimensionless variables.

For a potential difference distributed along the
length of the channel according to the law (2.1), the
zero-th approximation of the magnetic field strength
in the channel and u; have the form

=1—gz, Uy = Ugp + 0.50 [ — (1 — 2)?1(2.4)
From (1.16) we find

x
¥y = heh®)a-o 8(1 — z) WAy (2.5)
]

From (1.17) and (1.20) we obtain

Hy=y (v,Hy,—1) -+ f (2) (f {2) = felz)/ Hoo)

(2 .6)
u1=—3‘~[?1(1-—ﬁo+vao2)+Hof-fe] {fo== 100D,

Setting the corresponding values of the quantities
in expression (1.21) for f,(x) and reducing it to di-
mensionless form, we obtain

J &) = [exp (Ji (o — M) day)] X

X [fo + % Yo \ [2yoMH ofo — (o + M) +
0

X k]

+ 03 {1 4+ uot,)] exp (—— (uo—kHoz)dz) dx] )
Taking (2.4) into consideration, we may calculate

part of the integrals entering into this expression.

Performing the corresponding calculations, we obtain

F(@) = et [l + Ty @) + 5 vl ()]

Jy (x) = \ eHewH ydz, 2.7

S u

Jo(2) = g [v1 (1 + ueHp) — (uo + MHp)] eHondr .
]

We determine the constant f;. To do this we note
that it follows from the boundary condition (1.12) for
H,; and (2.6) that we must have f(1) = 0, Making use
of this, we easily calculate the last arbitrary constant

fo? .
Jo=—yola (1) 2 (% 4 L (1], (2.8)
Thus the required quantities in the flow core have
the form
a=1u0pF05A1—(1—2—kA{y |1 —(1 —2)2+
+ (=) (2) 0P 4 (1 — 2) ] (@) — oh

T (@) = \(1 — @) e-000-2005 o = kLT (2) €0 wa-ar, (2.9)
§

H=1—z+k{f{z)+y[A{l—2)] (z)erDa-=r __ 1]},
where f(x) is given by (2.7}, and f; by (2.8),
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On the basis of the equations obtained we shall con~
sider the flow picture in the core of the stream in
more detail, From (2.5) we find

doy [dz = h (1 — ) [1 — A (1 — z) 0BT (2)]

Hence it is clear that the derivative dv,/dx always
vanishes at the end of the channel for x = 1, Thus, in
the case under consideration, the velocity component
on the y axis always reaches a maximum at the end
of the channel, as distinet from the examples inves~
tigated in [1]. Values of v/k calculated from (2.5) for
three values of A (A = 10 solid curve, A =3 broken
curve, A = 0,3 dot-dash curve) are shown in Fig, 1.
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The differential equation of the stream lines has
the form '

dy [dx = kv, [ uo

with an accuracy to small terms of higher order.
Integrating and using (2.4) and (2.5), we obtain the
relation between y and x along a stream line

__ C AT (z) 0P
y=Y+ ’“Suoo+o.5x = ==y

0

dz,  (2.10)

where Y is the value of y on the stream line for x = 0,

Stream lines calculated from this formula for uy, =
= 3 and two values of A are shown in Fig. 2 (A= 10
solid curve and A = 3 broken curve). It follows from
(2.10) that with an accuracy to terms of order k? the
different lines may be obtained one from the other by
simply shifting along the y axis.
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Fig. 2
3. In the case of acceleration by the magnetic field
of the plasma itself, the flow behind the compression
shock is calculated in exactly the same way as for an
external magnetic field [1]. Estimates of the magni-
tude of the velocity v remain valid, and thus the ex-
pressions

pl/0°={(x+1)/{x—1)

ul/uy’ = —1)/(x+ 1), _

for density and velocity behind the shock will be valid
in the first approximation as before.

(3.1)

Here » is the ratio of specific heats at constant
pressure and volume, the upper index ° designates
quantities in the flow core in front of the shock, the
upper index 1 designates quantities behind the shock,
and uy, is the velocity component normal to the shock,
If the gas is fully ionized, then we may assume that
the quantity »« does not change on passing through the
shock.

The expressions

ul = ulcosa 4 ulsina, »'= —u.'sina -+ g.lcosa(3.2)

U, =ucosa—uvsind, u,=unsina 4+ vcosa (3.3)
also remain valid.

Here « is the angle of inclination of the shock to
the upper wall and u, is the velocity component tan-
gential to the shock. ,

As shown in {1], we may assume that behind the
shock v ~ 0 with the degree of accuracy adopted. Then
taking into consideration that the tangential compo-
nent of velocity does not change on passing through
the shock, we obtain

tgo = upljud = ual [’ = [(x—1)/ (% + BHl u,’[u-"(3.4)
from (3.1) and (3.2).

Confining ourselves to terms of order k, it is pos-

sible to find from (3.3) and (3.4)
tga = (x —1)2°/ 20°, ul =u.t=u.°"=u’ (3.5)

just as in the case of an external magnetic field.
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Fig. 3

The equations of continuity and motion behind the
shock assume the form

o {pu)yl/ oz =0, pudul 8z = —u AHOH | ix

if basic terms only are retained and if we take into
account that behind the shock v = 0.
Integrating these, we obtain

pu = plut, pu? + 0.5ughH? = p'u'? 4 0.5u, H" (3.6)
where p!, u! and H! are the values of p, u and H on
the stream line considered behind the shock at the
place where it intersects the shock, Setting the ex-
pansions (1.8) in the first equation of (3.6) and taking
(1.13), (1.18), (3.1), and (3.5) into consideration, we
obtain ‘

pu = [(x + 1)/ (x — 1)] pyolin (3.7)

behind the shock.
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We now note that with an accuracy to quantities of
order k we may assume that behind the shock the
magnetic field strength H is independent of y. Actual-
ly, it follows from (1.3) that 9H / 6y —kll / y,.in order
of magnitude. Consequently, behind the shock we have

Y

Hiz,y)=H (@) +\ %fJidy = H (z,y") + 0 (k)
ﬂl

since the interval of integrationy — y* ~ ky,, where y1
is the coordinate of the shock., Taking this info ac-
count, as well as (3.7) and (3.5), and also the fact
that H does not suffer any discontinuity at the shock,
we obtain from the second equation of (3.6) an ex-
pression for the velocity u behind the shock

wz, y) = u [zt ), y] + (3.8)
4 — 0726+ DIX{H? [22 (), y] — H? [&, y* ()]} .

Equation (3.8) gives an expression for the gas ve-
locity behind the shock in terms of parameters in the
flow core in front of the shock, in the channel cross
section considered (the point x, y'(x)) and in the
cross section where the stream line intersects the
shock (the point x!(y), ).

We obtain the relation between the coordinates of
the shock by noting that tg o = —dy'/dx!. We substitute
values of tg o from (3.5) and, from (2.9), the quan-
tities u and v [which enter into expression (3.5)], in
the flow core and integrate to obtain

w1 v ryde
yh=yo — kg Saoo»;— 058 [1— (L — =)
f

(3.9)

with an accuracy to quantities of order k°.

Fig. 3 shows the velocity profiles at the exit from
the channel calculated from (2.9) for the flow core and
from (3,8) behind the shock. Along the abscissa axis
is plotted the ratio of flow velocity to u,, i.e., to the
value of the velocity at the channel exit in the absence
of Hall currents, and along the ordinate axis the value
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of y relative to the channel height (to y;). The calcu-
lation has been carried out for k= 0.2, y, = 0.3, uy =
= 3. The solid curve corresponds to A = 10, the bro-
ken curve to A = 3, The points of discontinuity on the
curves correspond to the coordinate of the shock
(y'/y, ~ 0.887 for A = 10 and y'/y, ~ 0.907 for A = 3).
The lower points on the curves give the boundary of
the vacuum region. For A = 10 this boundary will be
at y/y, = 0.136 and for A = 3 at y/y, = 0.114,

it is clear from Fig. 3 that the general character
of the influence exerted by Hall currents on the velocity
profile for acceleration of a plasma in its own mag-
netic field remains the same as for acceleration in an
external magnetic field [1], i.e., the velocity changes
gently in the flow core and in the zone behind the
shock in streams passing through the shock at the be-
ginning of the channel, the velocity is 1,5-2 times
less than in the main flow, There is a small differ~
ence in the fact that in the case where a gas is ac-
celerated in its own magnetic field the velocity pro-
file in the main flow is agsymmetric with respect to the
center line of the channel. This is associated with the
fact that for self-field acceleration this field is asym-
metric over the channel cross section.
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